1,014 research outputs found

    High Energy Nuclear Collisions

    Full text link
    Highlights of the results from ultrarelativistic heavy ion collisions at CERN-SPS are reviewed. In particular, I discuss how the experimental results indicate that a collective strongly interacting system has been produced, and what are the implications towards the Quark Gluon Plasma. The physical ideas behind measuring certain observables are introduced. The future program of high energy nuclear collisions at BNL-RHIC and CERN-LHC/ALICE is also briefly discussed.Comment: Plenary talk at the International Europhysics Conference on High Energy Physics, EPS-HEP99, Tampere, Finland, July 1999; 21 page

    Minijets in ultrarelativistic heavy ion collisions at future colliders

    Get PDF
    The role of minijet production as initial conditions for QGP production at τ∌0.1fm/c\tau\sim 0.1 fm/c in nuclear collisions at the LHC and RHIC energies is discussed.Comment: 15 pages, including 2 figures, an invited article to Comments on Nuclear and Particle Physic

    Pre-thermalization dynamics: initial conditions for QGP at the LHC and RHIC from perturbative QCD

    Get PDF
    I discuss how the initial conditions for QGP-production in ultrarelativistic heavy ion collisions at the LHC and RHIC can be computed from perturbative QCD.Comment: 11 pages, including 2 figures. A lecture at the International School on the Physics of Quark Gluon Plasma, June 3-6, 1997, Hiroshim

    Initial state of the QGP from perturbative QCD + saturation

    Get PDF
    The production of the initial state of the QGP in very high-energy AAAA collisions is discussed within the framework of perturbative QCD and saturation. The next-to-leading order computation of the transverse energy of minijets is reviewed. Saturation of parton production, conjectured to occur at a dynamically determinable perturbative scale, leads to estimates of the initial densities. The final state multiplicities are predicted by assuming an isentropic hydrodynamical further evolution. Comparison with RHIC data is shown.Comment: 10 pages, 8 figures. Invited talk at the International Conference on Statistical QCD, August 2001, Bielefel

    Baryon-to-entropy ratio in very high energy nuclear collisions

    Get PDF
    We compute as a function of rapidity yy the baryon number carried by quarks and antiquarks with pT>p0≈p_T > p_0 \approx 2 GeV produced in Pb+Pb collisions at TeV energies. The computation is carried out in lowest order QCD perturbation theory using structure functions compatible with HERA results. At p0=2p_0=2 GeV the initial gluon density is both transversally saturated and thermalised in the sense that the energy/gluon equals to that of an ideal gas with the same energy density. Even at these high energies the initial net baryon number density at y=0y=0 at τ=0.1\tau=0.1 fm will be more than the normal nuclear matter density but the baryon-to-entropy ratio is only (B−Bˉ)/S∌1/5000(B-\bar B)/S\sim 1/5000. Further evolution of the system is discussed and the final baryon-to-entropy ratio is estimated.Comment: 19 pages, including 10 ps-figure

    On the sensitivity of the dijet asymmetry to the physics of jet quenching

    Full text link
    The appearance of monojets is among the most striking signature of jet quenching in the context of ultrarelativistic heavy-ion collisions. Experimentally, the disappearance of jets has been quantified by the ATLAS and CMS collaborations in terms of the dijet asymmetry observable A_J. While the experimental findings initially gave rise to claims that the measured A_J would challenge the radiative energy loss paradigm, the results of a systematic investigation of A_J in different models for the medium evolution and for the shower-medium interaction presented here suggest that the observed properties of A_J arise fairly generically and independent of specific model assumptions for a large class of reasonable models. This would imply that rather than posing a challenge to any particular model, the observable prompts the question what model dynamics is not compatible with the data.Comment: 8 pages, 6 figures, added computations of jet R_AA and R=0.2 result

    Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    Full text link
    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.Comment: 4 pages, 5 figure
    • 

    corecore